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Low Reynolds Number k-c Modeling with Improved e Equation

Kyoung Song", Geun Jong Yoo** and Kang Rae Cho*
(Received March 19, 1999)

A series of k -e model modification has been carried out using DNS data to include near wall

effects. Though these methods aided by DNS data open new ways of turbulence modeling, the

k-e turbulence models still have shortcomings in predicting turbulent flows for various

Reynolds numbers and various geometric conditions. Therefore a new k-e models with im

proved dissipation rate of turbulent kinetic energy equation and the damping function for eddy

viscosity model is proposed. The new dissipation rate equation is based on the energy spectrum

and magnitude analysis. The damping function for eddy viscosity is also based on the dissipa

tion rate length scale distribution near the wall and the DNS data. The new k-e model is

applied to fully developed turbulent flows in channels and pipes with a various Reynolds

numbers. Predictions show that the proposed model represents properly the turbulence prop

erties in all turbulent regions over a wide range of Reynolds numbers.

Key words: Low Reynolds Number, k-:e Model, Dissipation Rate, Energy Spectrum,

Magnitude Analysis. Length Scale. Reynolds Number Effect. Damping Function
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Nomenclature --------------
C¢ : Model constants

Db D< : Molecular diffusion terms of k and e
equations. respectively

j~, j~. I~ : Damping functions

IRe : Damping function for Rea effect

k : Turbulent kinetic energy i.k:'= k/ u~)
P« : Production term of k equation

Ps, : Mixed production term of c: equation

P<" : Production term by mean velocity
gradient in E: equation

PEe. : Gradient production term of E: equa-
tion

P<4 : Turbulent production term of E: equa-
tion

Ret : Turbulent Reynolds number (= e/
VE)

Re, : Reynolds number based on mean flow

velocity (= US/ v)

Re, : Reynolds number based on wall fric-
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tion velocity (= urol lI)

: Mean strain rate(=dU/dy)

: Turbulent diffusion terms of k and e
equation. respectively

: Streamwise mean velocity ( U+ = U /
Ur)

: Fluctuating velocity component

: Turbulent shear stress t.u,u, ~ = lI;Uj/

uD
: Wall friction velocity (=.j [wI p )

: Nomarlized wall distance(=urY/J.i)
: Destruction term of E: equation
: Ratio of mean field time scale to tur

bulent field time scale ( =s/ (c/ lI) liZ)

: Dissipation rate of k
: Psuedo dissipation rate of k(=<;-2))

(lk. j ) 2)

: Turbulent viscosity

: Additional destruction term of E

equation

: Pressure diffusion terms of k and E:

equation, respectively

6b 6< : Turbulent Prandtl number

<P,;, <P.,; : First and second partial derivative

with respect to Xi
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The momentum Eq. (2), is not closed due to

2. Turbulence Model

2.1 Governing equations
For incompressible, stationary turbulent 110ws,

governing equations tor mass. momentum and

turbulent quantities can be written conveniently

in Cartesian tensor notation as follows.

and Shimada (1993), and Shin and Choi (1996)

have proposed LRN models which are based on

DNS data. Rodi and Mansour( (993) modified

the equation of dissipation rate of turbulent

kinetic energy and determined the damping func

tion for turbulent viscosity by curve fitting DNS

data. Nagano and Shimada( 1993) improved Rodi

and Mansour(l993)'s work further by including

turbulent diffusion and pressure diffusion models

in the dissipation rate equation. Shin and Choi

(1996) modeled each term in the dissipation rate

equation separately. These models generally show

the good agreement with the DNS results for Re

r=395(Mansour et al ; 1988) on which their

models were based. However, they show poor

prediction ability for Re, = 150(Kuroda et al.,
1990). The models fail to retlect Reynolds num

ber effects because the proposed models are based

on curve fitting of DNS data at a particular

Reynolds number without consideration of the

near-wall behavior of turbulent properties.

In this study, a new LRN model is proposed

utilizing DNS data. The proposed model includes

an improved dissipation rate equation and an

improved damping function for the turbulent

viscosity. These are based on the distribution of

turbulent properties near the wall without any

fitted function. The proposed model also includes

a method to account for the Reynolds number

effect. This model is then applied to the fully

developed channel and pipe flows of various

Reynolds numbers. Prediction results are then

compared with DNS data, and they show excel

lent agreement.

(I)

(2)

ii.-»
DU, I P 'r- (-)--=-- 'TlIL!'''- [.I·U· .Dt P ,l I,;JJ l ,1_.J

if) : Time average of ¢

1. Introduction

Turbulent flows are common in engineering.

Therefore. various ways of the prediction for

turbulent flow have been suggested, and turbu

lence modeling is a well known approach.

Despite its shortcomings. turbulence modeling is

widely applied to practical flows si nee its imple

mentation is simpler than methods such as Direct

Numerical Simulation (DNS). With this advan

tage, the main effort in turbulence modeling is

focused on the accuracy improvement. Among

many different types of turbulence models, the k
- € model may be the most commonly used one.

The standard k - c model is easy to use. but it is

inadequate for complex flows due to its use of the

wall function. Low Reynolds number k - €

models (denoted by LRN hereafter) have been

developed to eliminate the wall function from the

standard k - E model. Jones and Launder (1972)

initiated the LRN model development and Patel

et al. (1985) studied performance of some LRN

models. Hanjalic and Launder(l976) suggested a

low Reynolds number turbulence model with an

improved dissipation rate of turbulent kinetic

energy equation model. Myong (1988) and

Nagano and Tagawa(1990) also extended the

LRN models. and their predictions show good

agreeme.nt with the results of turbulent pipe flows

of Laufer (J 954). However, physical modeling of

turbulent flows still contains inaccuracy to some

degree.

DNS analyzes turbulent flows without physical

modeling, and is widely accepted as a proper

approach to obtain the detailed and accurate

information of turbulent flow field. Turbulent

channel flows of Mansour et al . (1988) and

Kuroda et al . (1990) and turbulent flat plate

boundary layer of Spalart (1988) are the examples

of detailed DNS analyses. However, DNS

requires huge computing capacity even for the

simple turbulent flows. Therefore, the DNS

results are more effectively utilized for validation

of physical modeling rather than for flow field

analysis itself. Rodi and Mansour ( 1993). Nagano
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2.2 Modeling of e equation

(8)

( II )

( 10)

IdU/dyl
(el).l) 1:2

where ak> bk , aUl' and bUll are constants.
P; is defined as

p+ Pk -+ .ur +3+ (13)
k = U;l/ = uv c/Y+ =OuvY ...

Substituting Eqs. (12) and (13) back into Eq.

(10) yields the following limiting behavior of P:"
+- PEt near the wall.

where C'~ is model constant, !p is a new damping

function representing l/Re~:z, and 13 is the ratio of

the mean field time scale S to the turbulent field

time scale (c!l/) li2. For a fully developed flow, /3
becomes

PEl;,Pt2 = o[ (£7:) 1/2 R~~!2 ] (9)

Using Eq. (6). Pel +PE2can be modeled as

2.2.1 Modeling of P'l' Pe2
Applying the order of magnitude analysis of

Tennekes and Lumley( 1972), the ratio of produc

tion terms can be written as

Mean while. the exact Pt~ + Pi2 can be written as a
function of fluctuating velocities, using Taylor

series expansion. as Mansour et al. (1988) sug

gested.

The model constant C~ can be determined by

considering asymptotic behaviors of /3. k, e. and
P; near the wall. According to Chapman and

Kuhn (1986), these terms can be expanded as

functions of non-dimensional distance from the
wall, Y~, as

U+=U/Ur=Y++'" (l2a)

k+=klu~=aky+2+bky+3+... (12b)

c+=c/u~l/=2ak+4bkY++'" 02c)
zw+= uu/u;= ouvyc3+buvy+4+ ..· (12d)

(6)

u.u, terms and these terms are modeled with

Boussinesq approximation and turbulent viscos

ity. The turbulent viscosity is given by Eq. (3),

and the exact equation of the turbulent kinetic

energy and its dissipation rate are given by Eqs.

(4)-(5).

l/t=Cpf p k2h (3)

Dk
Dt =Pk + TI<+ flk + Dk-c (4)

~~ =P,l+ P,Z+P<3+ Po4+ Te+tt,» n-r (5)

The definition and the role of indivisual terms

on the right-hand side of Eq. (5) are given in

Rodi and Mansour( 1993). To solve this equation,

physical modeling is required for many unknown

terms. Similar to the usual LRN models, Nagano

and Shimada (1993) recently modeled the produc

tion terms, Ps.. Pe. P<3, P'4' and destruction term,
T', of dissipation equation altogether. They also

modeled the turbulent" diffusion term, To' and the

pressure diffusion term, Il, which were ignored

in the previous LRN models. However, their

model lacks the ability to account for individual

production term effects and includes a rather

empirical and complex damping function.

The new model for Eq. (5) retains the basic

modeling of Pt 4 and T similar to the previous

LRN models because they are mainly dominant

in the turbulent region and have little effect in the

low Reynolds number region. The terms of P'4
and r are given as follows.

c2

r=CedzT (7)

In Eqs. (6) - (7). the model constants Cel and

Cez are 1.45 and 1.90. respectively, as in the

previous LRN models. The damping function, f2,

is to be given in section 2.2.3. However, Eqs. (6)

- (7) are assumed for isotropic turbulent flows. In

an anisotropic flow near the wall, their predic

tions show discrepancy with the DNS data as

Rodi and Mansour (1993) pointed out. Therefore,

Eq. (6) - (7) may require an additional destruc

tion term, e. to account for anisotropic produc

tion effect near the wall. The final form of dissipa

tion rate equation becomes
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Pit+Pii=4auuY+ +4Cy+2+ 0 (y+3) (15)

Though Eqs. (14) and (15) represent two differ

ent forms of Pit+Pii, coefficients of the corre

sponding terms should be identical to each other.

A comparison of coefficients of the largest terms

gives

( 16)

Here, j~ represents 1/Re;!2 which becomes zero

away from the wall and can be approximated as

jp=exp[ - (Red Cf P ) 2J (17)

The value of Cf P of Eg. (17) is determined to

be 120 from the condition that Ip must be zero

beyond the logarithmic layer and the use of the

Ret value from DNS data at Re r=395(Mansour

et al., (988). Also. fJ at the wall can be evaluated

from Eqs. (I J) and (12d) to be

[dU+/dy+! I
(3 ",+1/2 ') =--;== (18)

" V-Ok Ic:;;,
Thus, fJ at the wall depends on the wall dissipa

tion rate, c;;,=2 0 b which can be obtained from

DNS data. Mansour et al. (1988) reponed that

e; is about 0.22081 for Re t=395. Now, the model

constant G of Eq. (16) can be found by substitut

ing Cn, jfi and fJ values into Eg. (16). The

resulting value of W is about 0.65. The final form

is

2.2.2 Modeling of a additional destruction
term in dissipation rate equation

Rodi (1971) derived the e equation for

isotropic f1ows. The e equation, however.

requires modification for the near-wall flow since

this flow is anisotropic. As suggested in Eq. (8).

the additional destruction term, e, is introduced

in this study. For anisotropic turbulent flow, the

spectral energy equation (Hinze, 1959) is

E

I ,

\ I /(0 /(, 1<2

I. \\ 1\ Go.....""'by • .-_

\ F .....-01"'....-,_
III "''''--by.---

Ie

Fig. 1 Spectrum E and spectral energy balance at a
near-wall region.

r=2ir!?[2(Ed aV-[Kl O!fl.i ] ] (21)
ale2 a,

where Ei,i is a spectrum tensor of turbulence

kinetic energy and lei is the component of

wavenumber vector. The budget of Eq, (20) is

shown in Fig. I.

In Fig. 1, the hatched regions represent addi

tional production and dissipation rate by the

mean motion due to anisotropy. According to

Hinze(1959) this additional production energy is

directly delivered to the small scale turbulence

now by the mean motion, instead of transfer

spectrum, when the vorticity of the mean motion

is comparable with that of the turbulence flow.

So, the transfer spectrum F remains unchanged

for both isotropic and anisotropic flows. The

additional turbulence production must increase

the dissipation rate as shown in Fig. I.

With the definition of e=2v[00 t?EdK. Eq.

(20) can be integrated from K=O 10 K=CO to

yield the e equation for anisotropic now.

de: =2!/ ,'''',;F(IK-4 y2 [OO"IEdK_2y dlL1D

hdK (22)
dt.o ,0 ely 0

s destruction additional e production

Eq. (22) is rearranged as

D'

Here, E is the energy spectrum, F is the transfer

spectrum, K is the wavenumber and r is defined as

follow,

C'

The first term of Eq. (23) is modelled by Rodi

(1971) as

turbulent production
by the mean motion

dissipation rate

di' '00

-2!1- 1 lydK
dy)o /

(23)
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(24)

y'
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Fig. 2

dUl'~ dU ,~G'=-2v-I- i7dK=-4;w-
d
' I K4(Eda"dK

(y 0 y Jo

au 01' su (25)-)v----
-- ax, ax; dy

I" _ 1/
2'-'')0 KZFdK=CI 'k Pk- CZT

Unlike Rodi (1971) 's E: equation, additional terms

due to anisotropic flow are appeared in Eq. (23)

near the wall. G' is the additional production of

e. Since the contribution of G' to the c equation

is the same as that of PEl and Pol' Eq. (19) can be
used as the modeling form of this term. Mean

while, D' is an additional destruction propor

tional to G' near the wall and this term is

modelled as follows.

From the correlation of spectral energy, G' is

found to be

where the integration of the second term of y in

Eq. (21) is zero from the spectrum relation

(Hinze, 1959).

Since the D' term, named by ~ hereafter, is

proportional to the G' term, .:; is assumed to be

the form multiplying Eq. (25) by a model con

stant C$'

(26)
equivalent to fp of Eq. (17). Including the model

constant and the damping function, the final form

of ; model can be written as

2.2.3 Modeling of other terms
The gradient production, Pe3, has a near wall

distribution different from those of the other

production terms. This indicates that Pe3 requires

a separate modeling approach. Rodi and Man

sour(1993). Nagano and Shimada(1993), and

(28)- - 03- -I dU I [( Ret )2J~ - - . ) c dy exp - 120

In Fig. 2, the distributions of Pi, - T from the

present model and Rodi ( 1971) 's model are shown

with Pel + Pe: The present model predicts the

DNS data trend at / < 10 while the Rodi (1971r
s model doesn't. Especially. the sum of Pel + Pe2
+P'3+PH - T of present model agrees with the
DNS data. From this result. it is seen that the

modelling of near-wall terms, Pol +PeZ and $ are

successfully perforned.

(27)

To determine, C", a numerical simulation is

performed by changing the values of C< for the

best fit against the DNS data. The optimum value

of C~ is found to be 0.35.
In addition to the model constant, a damping

function is further introduced to ensure that the

additional c destruction disappears in the logar

ithmic layer. The additional c destruction distri

bution should follow the additional EO production

distri but ion to maintain energy balance. There

fore, the new damping function can be set to be

J:=_C2yOU au dU
.., • ax; ax, dy

Now, .; is expressed as product of dissipation

rate tensor and mean velocity gradient. Since no

dissipation rate tensor can be found in the k - e
model, .; is rewritten by using the pseudo dissipa

tion rate, g, which becomes zero at the wall. And

the absol ute val ue of mean velocity grad ient, dU/
dy is taken so that'; is always negative.
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II

fp=[ (R~1'2 tanh (R~~/'/Cdl) )' + I] 4 • I« (34)

The damping function, fd' can be found by

considering the distribution of turbulent prop

erties near the wall. From Eq. (12), following

relationships can be obtained at the wall.

And this equation is arranged with respect to

Ldh (=k3!2!c).

[,1= k;2 [( R~rTr tanh(R~r'l Cdl) r+I)r (33a)

It is verified from DNS data that L d of Eq. (33a)

becomes to Ls« as Ret proportial to y+ becomes

large. Utilizing Eqs. (33a), (30) and (3), If.'
function can be obtained.

Meanwhile, L.u has been proposed in various

forms. The length scale, J ))k!c of Myong (1988)

and the Kolmogorov length scale Tj= ())31c) 1'4 of

Nagano and Tagawa (1990) are good examples of

L dl· Considering its small value very near the

wall(y+:S;2-3), Tj may be used as Ls. in this

region. Away from the wall(y+~2-3), .,!))k/c
could represent L:« reasonably. L d t is, therefore,

proposed to include these trends by combining 7J

and /ykl£ with hyperbolic tangent function.

- ,;r;}{ I
Ldl-CdiV c tanh(Re\I4/C

d t
) (32)

Now, the length scale, L d , can be obtained from

L dl and L dh. Myong(1988) suggests L; as a

summation of L d t and L a h . However, the simple

summation of Eq. (31) and (32) does not ensure

the correct length scale transition for different

flow regions. Therefore, a fourth order interpola

tion is applied to have the final form of length

scale, t.:

(31)

(33)

Since the turbulent diffusion, T¢, and the pres

sure diffusion. Il«. are not negligible near the

wall, these terms should also be included in the c

equation as well. The turbulent diffusion model

of Nagano and Shimada(l993) shows good per

formance: however, it decreases slowly near the

wall. The model of Nagano and Shimada(1993)

is used in this study after modifying the exponent

of o; from 0.75 to 1.0 as shown in Eq. (45a). The

pressure diffusion model is also adopted from

Nagano and Shimada(1993) as it has shown a

good agreement with DNS data.

Shin and Choi (1996) proposed their own Pt 3

models. Rodi and Mansour (1993)'s model shows

correct trends for the e distribution. However, it

overpredicts the maximum and minimum values

of dissipation rate. Other models are generally too

complex to use. Therefore, the Pe3 of Rodi and

Mansour(l993) is employed after multiplying 0.8

to adjust for its overprediction.

The damping function 12 for c destruction in

Eq. (7) is adopted from the work of Nagano and

Tagawa(l990) .

12= [1-OJexp[ - (Re t I6.5)'J][I -exp( - v'16)]2 (29)

2.3 Eddy viscosity damping function
The damping function, /;" of Eq. (3) is known

to be important to ensure correct near wall behav

ior of mean velocity and turbulent viscosity.

Myong(1988) and Nagano and Tagawa(1990)

modeled the 1;< function on physical basis. How

ever, their prediction has some discrepancy when

compared to the channal flows DNS data. Since

the If.' functions of the LRN models have similar

problems, a new If.' function is proposed to cor

rect for this shortcoming. From dimensional anal

ysis, the turbulent viscosity can be written as

(30)

where f« is the damping function and CeddY is a

model constant. Ld represents the length scale of

dissipation rate which becomes Ldh in the high

Reynolds number region and Ls, in the low

Reynolds number region. In general, the length

scale of dissipation rate in the high Reynolds

number region can be approximated as

y+=_I_Il_'-ccv.3 k· x y +2 c+~c+ (35)
I dU/dv -' . , ~ w

From Eqs. (35) and (3), the near wall behavior

of II' is found to be proportional to 1/ y +. Since

the term in the square bracket of Eq. (34) follows

1/)'+3 distribution, I« function must be propor

tional to y+z to satisfy the limiting behavior of If."
Now, Id can be
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Table 1 Constant variation with Rea

Manaourelm (1988)
\ Re t : 395

• DNSdala

-, 40 [1.0.5 exp{.ResI10·)]

........ Mansoor eI m(1988~ R..,=180

~ Kurodaelal.(1990). Ret : 150

Spalart (1988). Ree=1410

25

35

40

30

45 .,.---------------,

c-c,

10'
Ras

Fig. 3 C1 • Cd' distribution with respect to Rea.

(36)

where Cr« is the model constant. C/d could be set
to 41 to satisfy the condition that Id must be one

beyond the logarithmic layer.

C1 and Ce. can be determined from the
asymptotic analysis of turbulent properties. From

Eq. (3), (12) and Boussinesq approximation for

u.u.: the near wall behavior of II' can be found.

i/UiJ+ la• • aut' I +... (37)
II' C!'k·zd{P!dy" Cl'd y+

On the other hand, the near wall behavior of II'
can also be obtained directly from Eq. (34)

together with Eq. (36) and the limiting behavior

of Ret·

From Eqs. (37) and (38). the model constant.

C . Ca is obtained as follows.

Rea C, c: C/P c;
13750 3.5 10 120 100

For all of
4.0 IOfRe 140/.. 120IRe

Res

Inserting DNS data at Re,=395 into Eq. (39),

C . Cs. is found to be 35. However, the values of

the wall dissipation, c;;', and Ouu vary with Rea,

C1 and Ca can be further refined after including

the effect of Reynolds number.

2.4 The Reynolds number effect
Recently developed LRN models can accurate

ly predict high Reynolds number flows. However,

their predictions are poor for low Reynolds num

ber flows. The current model takes into account

this Reynolds number effect.

C . Cdt of II' is obtained from DNS data and
shows Reynolds number dependence in Fig. 3.

C . Ca can be curve-fitted as follows.

C\ • Cd/=40 • IRe (40)

fRe= 1-0.5exp( -Rea/10
4

) (40a)

Since Eq .. (40) is the form of multipling C and

C« together, C and Ca must be divided. C is
experientially determined as 4.0 from the fact that

a constant similar to C1 of the present model has
a value between 3.5 and 4.0 in Myong (1988) and

Nagano and Tagawa(1990). Thus,

2.5 Final form of proposed LRN model
Substituting each modeled term into the gov

erning equations, the final form of newly

proposed low Reynolds number k - e model are

presented belews.

Turbulent kinetic energy equation

Dk =[f lfTJ:!..)k,y] -i-Pk-c-O.5[vllV/S-e.y ] (42)
Df \ ~ ~ £ ~

The damping functions of Eqs. (17) and (28)

should depend on Ret and the mean flow

Reynolds number Re, for the following reasons.

According to the DNS data, limiting behavior of

Ret near the wall depends on e; which varies

with Res- E~' decreases as Res decreases and Ret

eventually also decreases. In other words, Ret

should be decreased as Re, decreases, and, conse

quently, the damping effects of Eqs. (17) and

(28) should increase. Therefore, the model con

stants of these damping functions should be cor

rected by Eq. (40a) to include the Re, effect. The

values of the current model constants for the

damping functions are determined from the DNS

data for Re, =395. Incorporating the Res effects

on the damping function, the revised model con

stants are shown in Table I.

(39)

(41)
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(47)

Dissipation rate equation

t» [( v, ) ] C' P e C f c
2

[jf= v+o:;- Coy .Y+ <1 kT- <2J'lf:

jdUI-0.35 . E dy Is

+0.5 . [vflwk (1- jWk) k»t
+0.8· [WIW,yy)2+0.006",;k.yu.y,u,yy] (43)

iJ, function
1I4 2

k=[(;~~!2 tanh(R~i"7 Cdl) r+I]· .[ l-exp( -[{; JJ]
(44)

Here, the other damping functions and model

constants are also given by

often induces the numerical instability. As a rem

edy, Chapman and Kuhn (] 986)'s relationship is
applied (Eq. (47»).

__ 41/k
1

CW--Z--Cl
YI

where the subscript I denotes the first grid point

from the wall. To assure the numerical accuracy.

we set the first grid point at yt =0.1. and a non

-uniforrn grid is generated with an increasing

ratio of 1.0I. Grid independence test is performed

against different number of grid points and the

grid independence is achieved for a total grid
number above 65.

4. Results and Discussion

3. Numerical Method

and the model constants CI P' C16 • Cs, are shown
in Table 1.

The governing equations for fully developed

turbulent flow are discretized by finite volume

method (FVM), and the discretized equations are

solved by TDMA. The symmetric boundary con

dition is used at the centerline and no-slip, no

-penetration conditions with k=O and c",=)/

Ufk/dy2).,.. are applied at the wall. Since Cll' is

given in the form of a second spatial derivative, it

1.2
a; 1+3.5exp[-(Re,/Cf 6) ]

1.3
(h=nO'k

CI = 1.45· (l +O.65fp,B)
13=ldU/ dyl/(c:! )/)0.5

fp=expl- (Red C1 P) 2J
fRe= I-O.5exp( -Res/10

4
)

f1Vk=exp[ - (y+/9)2J

(45a)

(45b)

(45c)

(45d)

( 17)

(40a)

(46)

4.1 Evaluation of the modified model
The performance of the new LRN model IS

compared with the corresponding DNS data and

the model of Nagano and Tagawa(l990). As

shown in Table 2. test cases are selected by com

bining new and existing models. The 'Present'

case refers to using Eqs. (43) and (44) for the

dissipation rate equation and the damping func

tion. Case A uses the new damping function, Eq.

(44) and the dissipation rate equation of Nagano

and Tagawa (1990). Case B is setup with the

damping function of Nagano and Tagawa( 1990)

and the newly proposed dissipation rate equation.

Thus, the new dissipation rate and damping func

tion models can be evaluated individually. The

effects of model constant correction are assessed

via Case C and Case D which include different

sets of model constants as shown in Table 2. Fig.

4(a) presents the near wall behavior of c~. Pres

ent case and Case B produce better predictions

than the Case A. Thus the new dissipation rate

Table 2 List of test case

Case fp e equation CI c: Cf P Cf(J

Present Eq. (44) Eg. (43) 4.0 lOiRe l40fRe 120/ ••

Case A Eq. (44) NT's model 4.0 lOiRe 140/Re 120fR~

Case B NT's model Eg. (43) 4.0 IOfRe I l40jRe 120/Re
I

Case C Eg. (44) Eg. (43)
I

3.5 10 I 120 100I I

Case D Eg. (44) Eq. (43) i 4.0 lOIRe I 120 I \00
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(a) Dissipation rates

from the DNS data. The effect of damping func

tion model is displayed more clearly in Fig. 4(b).

Fig. 5 shows the predictions for Re , =.150. Com

parisons of U+ and e: clearly show that the

Present case results are in excellent agreement

with the DNS data (Kuroda et al., 1990). Thus,

one can infer that the proposed model properly

reflects the Reynolds number effect.

equation model can describe near wall behavior

of 10+. Present case results closely follow the DNS

data for 10+ while Case B's results show deviations

(b) Dissipation rates

Fig.5 Verification of Reynolds effect correction
(. : Kuroda et al .. 1990).

4.3 Turbulent pipe flow
The model is applied to a fully developed

turbulent pipe flow. Fig. 9 shows predictions

from different models and the experimental data

of Schildknecht et al. (1979) for Re r=500.

General agreement is observed for U+ and k"
except near center line of pipe. Predictions for E+

shows a similar agreement between predictions

from the current model and the Nagano and

Shimada (1993) model with the trend in channel

flows. The visible discrepancy between the model

predictions and the experimental data is well

known and is thought to be due to measurement

errors. A similar comparison against Laufer

4.2 Turbulent channel flow
Performance of the current model is verified

against fully developed turbulent channel flows of

different Reynolds numbers. For comparison,

prediction results from the models of Nagano and

Tagawa(1990), Nagano and Shimada(1993) and

Shin and Choi (1996) are also presented in Fig.

6. Acceptable agreement between predictions and

the corresponding DNS data (Mansour et ai.,
1988) is found for mean velocity, U·, and turbu

tent kinetic energy, r: Present case, however,

shows the best agreement, and the same trend can

be seen for the dissipation rate, 10+, as explained

in previous section. The budget of k+ equation

also shows excellent agreement with DNS data

(Mansour et al., 1988).

In Fig. 7, the predictions for different Reynolds

number are presented. Similar to the case of Re ,

=395, the current model can predict the DNS

data(Kuroda et al .. 1990) except that slightly

overpredicted k + is observed near center region.

Therefore, the current model successfully

accounts for the Reynolds number effect (Fig. 8).

100 y.,.
(a) Mean velocities

(b) Damping functions

Evaluation of the modified e equation and /"
function(. : Mansour et al., 1988).

0.25

s' Re T " 50 ( Re H_ l eO.2ll \ --'. ._-- e.c
'.\ --- e-D

~15 \\,\ • OIlS

0.10

~,.I ~~'"aJl5j
I --=~
I

0
Q " III 311 '" llll ..v:

Fig. 4
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Fig. 7 Comparison of prediction results in a channel

flow for ReT= ISO(. : Kuroda et al .. 1990).
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Fig. 8 Mean velocity distributions in channel flows

with various Reynolds number. (. : Johan

son and Alfredson (1982). • : Mansour et
al . (1988), 0 : Kuroda et al. (1990).
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(d) Budget of turbulent kinetic energies

Fig. 6 Comparison of prediction results in a channel

flow for Re r = 395(. : Mansour et al ;
1988) .
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Fig. 11 Mean velocity distributions in pipe flows
with various Reynolds number.(.: Schild
knecht et al . (1979),.: Laufer(1954).O.
0: Hishida et al. (1976».

(b) Turbulent kinetic energies

Fig. 10 Comparison of prediction results in a pipe
flow for Rer=1052(. : Laufer. 1954).

j 2).

Again, the present U+ model can predict more
accurately than any other model. k" predicted by

10080
0+---_--_--_--_---1

o

(1954)'s experimental data is shown in Fig. ]0
Fig. 11 also presents comparison results of U"

prediction at different Reynolds numbers. The
good agreement between predictions and data
confirms that the current model can correctly
predict turbulent flows at various Reynolds num
bers.

4.4 Turbulent flat-plate flow
The model is also applied to turbulent flat

-plate flow cases. The predictions are compared
with the DNS data of Spalan(1988) and the
experimental data of Nagano et al . (1991) (Fig.

(c) Dissipation rates

Fig. 9 Cornparsion of prediction results in a pipe
flow for Rer=500(. : Schildknecht et al ..
1979).



862 Kyoung Song, Geun long Yoo and Kang Rae Cho

5. Conclusions
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